Capsule Network for ERP Detection in Brain-Computer Interface

IEEE Trans Neural Syst Rehabil Eng. 2021:29:718-730. doi: 10.1109/TNSRE.2021.3070327. Epub 2021 Apr 19.

Abstract

Event-related potential (ERP) is bioelectrical activity that occurs in the brain in response to specific events or stimuli, reflecting the electrophysiological changes in the brain during cognitive processes. ERP is important in cognitive neuroscience and has been applied to brain-computer interfaces (BCIs). However, because ERP signals collected on the scalp are weak, mixed with spontaneous electroencephalogram (EEG) signals, and their temporal and spatial features are complex, accurate ERP detection is challenging. Compared to traditional neural networks, the capsule network (CapsNet) replaces scalar-output neurons with vector-output capsules, allowing the various input information to be well preserved in the capsules. In this study, we expect to utilize CapsNet to extract the discriminative spatial-temporal features of ERP and encode them in capsules to reduce the loss of valuable information, thereby improving the ERP detection performance for BCI. Therefore, we propose ERP-CapsNet to perform ERP detection in a BCI speller application. The experimental results on BCI Competition datasets and the Akimpech dataset show that ERP-CapsNet achieves better classification performances than do the state-of-the-art techniques. We also use a decoder to investigate the attributes of ERPs encoded in capsules. The results show that ERP-CapsNet relies on the P300 and P100 components to detect ERP. Therefore, ERP-CapsNet not only acts as an outstanding method for ERP detection, but also provides useful insights into the ERP detection mechanism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain
  • Brain-Computer Interfaces*
  • Electroencephalography
  • Evoked Potentials
  • Humans
  • Neural Networks, Computer