Direct Evidence for Excitation Energy Transfer Limitations Imposed by Low-Energy Chlorophylls in Photosystem I-Light Harvesting Complex I of Land Plants

J Phys Chem B. 2021 Apr 15;125(14):3566-3573. doi: 10.1021/acs.jpcb.1c01498. Epub 2021 Mar 31.

Abstract

The overall efficiency of photosynthetic energy conversion depends both on photochemical and excitation energy transfer processes from extended light-harvesting antenna networks. Understanding the trade-offs between increase in the antenna cross section and bandwidth and photochemical conversion efficiency is of central importance both from a biological perspective and for the design of biomimetic artificial photosynthetic complexes. Here, we employ two-dimensional electronic spectroscopy to spectrally resolve the excitation energy transfer dynamics and directly correlate them with the initial site of excitation in photosystem I-light harvesting complex I (PSI-LHCI) supercomplex of land plants, which has both a large antenna dimension and a wide optical bandwidth extending to energies lower than the peak of the reaction center chlorophylls. Upon preferential excitation of the low-energy chlorophylls (red forms), the average relaxation time in the bulk supercomplex increases by a factor of 2-3 with respect to unselective excitation at higher photon energies. This slowdown is interpreted in terms of an excitation energy transfer limitation from low-energy chlorophyll forms in the PSI-LHCI. These results aid in defining the optimum balance between the extension of the antenna bandwidth to the near-infrared region, which increases light-harvesting capacity, and high photoconversion quantum efficiency.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chlorophyll
  • Embryophyta* / metabolism
  • Energy Transfer
  • Light-Harvesting Protein Complexes / metabolism
  • Photosystem I Protein Complex* / metabolism

Substances

  • Light-Harvesting Protein Complexes
  • Photosystem I Protein Complex
  • Chlorophyll