HDAC inhibition prevents hypobaric hypoxia-induced spatial memory impairment through PΙ3K/GSK3β/CREB pathway

J Cell Physiol. 2021 Sep;236(9):6754-6771. doi: 10.1002/jcp.30337. Epub 2021 Mar 31.

Abstract

Hypobaric hypoxia at higher altitudes usually impairs cognitive function. Previous studies suggested that epigenetic modifications are the culprits for this condition. Here, we set out to determine how hypobaric hypoxia mediates epigenetic modifications and how this condition worsens neurodegeneration and memory loss in rats. In the current study, different duration of hypobaric hypoxia exposure showed a discrete pattern of histone acetyltransferases and histone deacetylases (HDACs) gene expression in the hippocampus when compared with control rat brains. The level of acetylation sites in histone H2A, H3 and H4 was significantly decreased under hypobaric hypoxia exposure compared to the control rat's hippocampus. Additionally, inhibiting the HDAC family with sodium butyrate administration (1.2 g/kg body weight) attenuated neurodegeneration and memory loss in hypobaric hypoxia-exposed rats. Moreover, histone acetylation increased at the promoter regions of brain-derived neurotrophic factor (BDNF); thereby its protein expression was enhanced significantly in hypobaric hypoxia exposed rats treated with HDAC inhibitor compared with hypoxic rats. Thus, BDNF expression upregulated cAMP-response element binding protein (CREB) phosphorylation by stimulation of PI3K/GSK3β/CREB axis, which counteracts hypobaric hypoxia-induced spatial memory impairment. In conclusion, these results suggested that sodium butyrate is a novel therapeutic agent for the treatment of spatial memory loss associated with hypobaric hypoxia, and also further studies are warranted to explore specific HDAC inhibitors in this condition.

Keywords: brain-derived neurotrophic factor; histone acetyl transferases; histone deacetylase; hypobaric hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation / drug effects
  • Animals
  • Brain-Derived Neurotrophic Factor / genetics
  • Cyclic AMP Response Element-Binding Protein / metabolism*
  • Glycogen Synthase Kinase 3 beta / metabolism*
  • Hippocampus / metabolism
  • Histone Acetyltransferases / genetics
  • Histone Acetyltransferases / metabolism
  • Histone Deacetylase Inhibitors / pharmacology*
  • Histone Deacetylases / genetics
  • Histone Deacetylases / metabolism
  • Histones / metabolism
  • Hypoxia / complications*
  • Male
  • Memory Disorders / etiology*
  • Memory Disorders / metabolism
  • Models, Biological
  • Nerve Degeneration / complications
  • Neurons / drug effects
  • Neurons / metabolism
  • Neuroprotection / drug effects
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Promoter Regions, Genetic / genetics
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Signal Transduction* / drug effects
  • Spatial Memory* / drug effects

Substances

  • Brain-Derived Neurotrophic Factor
  • Cyclic AMP Response Element-Binding Protein
  • Histone Deacetylase Inhibitors
  • Histones
  • RNA, Messenger
  • Histone Acetyltransferases
  • Glycogen Synthase Kinase 3 beta
  • Histone Deacetylases