Aqueous Nd3+ capture using a carboxyl-functionalized porous carbon derived from ZIF-8

J Colloid Interface Sci. 2021 Jul 15:594:702-712. doi: 10.1016/j.jcis.2021.03.036. Epub 2021 Mar 15.

Abstract

A porous graphitic carbon was obtained via the pyrolysis of a zeolite imidazolate framework (ZIF-8) under Ar atmosphere. Then, the carbon was functionalized with carboxylic groups and applied for separation of neodymium ions (Nd3+) from water. The adsorbent (denoted as C-ZDC) was characterized by X-ray diffraction, N2 adsorption-desorption isotherms, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning and transition electron microscopies, thermogravimetric analysis, and Boehm titration. A practical adsorption equilibrium was attained within 4 h, and the adsorption isotherm at 25 °C revealed a maximum adsorption capacity of 175 mg/g, which is one of the highest values reported for different kinds of adsorbents. The adsorption kinetics and equilibrium isotherms were modeled, and the selectivity for Nd3+ over other metal ions was examined. From the effect of solution pH on the adsorption and material characterization results before and after adsorption, the high adsorption capacity of C-ZDC was ascribed to the formation of coordination bonds between Nd3+ ions and the -COOH groups. Further, the material was reusable for at least four adsorption-desorption cycles after a simple step of acid washing.

Keywords: Adsorption; Carboxylic acid functionalization; Rare-earth elements; ZIF-8; ZIF-derived carbon.