High-efficient reduction of methylene blue and 4-nitrophenol by silver nanoparticles embedded in magnetic graphene oxide

Environ Sci Pollut Res Int. 2023 Jun;30(28):71543-71553. doi: 10.1007/s11356-021-13597-z. Epub 2021 Mar 26.

Abstract

In this study, a ternary magnetically separable nanocomposite of silver nanoparticles (AgNPs) embedded in magnetic graphene oxide (Ag/Fe3O4@GO) was designed and synthesized. Beta-cyclodextrin was used as a green reducing and capping agent for decorating of AgNPs on Fe3O4@GO. The fabricated material was characterized using X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectroscopy. The catalytic properties of the prepared Ag/Fe3O4@GO for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB) dye with sodium borohydride were investigated in detail. The morphological and structural studies revealed that Fe3O4 and AgNPs with a mean size of 12 nm were uniformly distributed on the GO sheet at high densities. The catalytic tests showed that Ag/Fe3O4@GO exhibited an ultrafast catalytic reduction of 4-NP and MB with a reduction rate constant of 0.304 min-1 and 0.448 min-1, respectively. Moreover, the catalyst demonstrated excellent stability and reusability, as evidenced by the more than 97% removal efficiency maintained after five reuse cycles. The Ag/Fe3O4@GO catalyst could be easily recovered by the magnetic separation due to the superparamagnetic nature of Fe3O4 with high saturated magnetization (45.7 emu/g). Besides, the formation of networking between the formed AgNPs and β-CD through hydrogen bonding prevented the agglomeration of AgNPs, ensuring their high catalytic ability. The leaching study showed that the dissolution of Fe and Ag from Ag/Fe3O4@GO was negligible, indicating the environmental friendliness of the synthesized catalyst. Finally, the high catalytic performance, excellent stability, and recoverability of Ag/Fe3O4@GO make it a potential candidate for the reduction of organic pollutants in wastewater.

Keywords: 4-Nitrophenol; Graphene oxide; Magnetic nanocatalyst; Methylene blue; Reduction; Silver nanoparticles.

MeSH terms

  • Catalysis
  • Magnetic Phenomena
  • Metal Nanoparticles* / chemistry
  • Methylene Blue / chemistry
  • Silver / chemistry

Substances

  • 4-nitrophenol
  • Methylene Blue
  • graphene oxide
  • Silver