2D-to-1D constellation reforming using phase-sensitive amplifier-based constellation squeezing and shifting

Opt Express. 2021 Feb 1;29(3):3724-3737. doi: 10.1364/OE.417353.

Abstract

In this paper, a phase-sensitive amplifier (PSA)-based two dimensional (2D)-to-one dimensional (1D) constellation reforming system is proposed and analyzed in detail. The proposed system theoretically realizes seven kinds of 10 GBaud quadrature amplitude modulation (QAM)-to-pulse amplitude modulation (PAM) conversions, including quadrature phase shift keying-to-PAM4 and 8QAM-to-PAM8 conversions. The constellation reforming system consists of a constellation squeezing PSA and a multi-level vector moving PSA. The operating principle and formula derivations of constellation squeezing and vector moving processes are fully explained, including the PSA transfer characteristics and PSA gain axis angle analytical solutions. When implementing QAM-to-PAM conversions, the constellations, spectra, eye diagrams, error vector magnitudes and bit error ratio (BER) performances of the QAM and PAM signals are measured. For 8QAM-to-PAM8 conversion, with the input OSNR of 25 dB and 30 dB, at the BER of 10-3, the converted PAM8 shows the receiver OSNR of 38.9 dB and 35.2 dB, respectively. The proposed and verified 2D-to-1D constellation reforming system builds an optical bridge connecting long-haul and short-reach networks, which can be employed in the format conversion, high-order format signal generation and shaping, and flexible information aggregation/de-aggregation.