Stripe phases in WSe2/WS2 moiré superlattices

Nat Mater. 2021 Jul;20(7):940-944. doi: 10.1038/s41563-021-00959-8. Epub 2021 Mar 25.

Abstract

Stripe phases, in which the rotational symmetry of charge density is spontaneously broken, occur in many strongly correlated systems with competing interactions1-11. However, identifying and studying such stripe phases remains challenging. Here we uncover stripe phases in WSe2/WS2 moiré superlattices by combining optical anisotropy and electronic compressibility measurements. We find strong electronic anisotropy over a large doping range peaked at 1/2 filling of the moiré superlattice. The 1/2 state is incompressible and assigned to an insulating stripe crystal phase. Wide-field imaging reveals domain configurations with a preferential alignment along the high-symmetry axes of the moiré superlattice. Away from 1/2 filling, we observe additional stripe crystals at commensurate filling 1/4, 2/5 and 3/5, and compressible electronic liquid crystal states at incommensurate fillings. Our results demonstrate that two-dimensional semiconductor moiré superlattices are a highly tunable platform from which to study the stripe phases and their interplay with other symmetry breaking ground states.