Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly

J Acoust Soc Am. 2021 Mar;149(3):1674. doi: 10.1121/10.0003685.

Abstract

This paper deals with the theoretical description of self-sustained oscillations resulting from the coupling of a piston-crank-flywheel assembly with a thermoacoustic-Stirling prime mover. The governing equations of the piston-flywheel motion are coupled to those of the thermoacoustic system, which is described in the time domain through a rational differential operator relating acoustic pressure fluctuations inside the cavity to the piston's velocity. As a result, the complete device is described by means of a fourth-order nonlinear dynamical system and solved numerically. The dynamical behavior of the system is studied as a function of the temperature difference along the thermoacoustic unit, and it is shown that the regime of stable rotations of the flywheel appears through a saddle-node bifurcation above a threshold value of the temperature difference. Moreover, the simulation results show good agreement with experiments.