Initial abundance and stochasticity influence competitive outcome in communities

J Anim Ecol. 2021 Jul;90(7):1691-1700. doi: 10.1111/1365-2656.13485. Epub 2021 Apr 30.

Abstract

Predicting competitive outcomes in communities frequently involves inferences based on deterministic population models since these provide clear criteria for exclusion (e.g. R* rule) or long-term coexistence (e.g. mutual invasibility). However, incorporating stochasticity into population- or community-level processes into models is necessary if the goal is to explain variation in natural systems, which are inherently stochastic. Similarly, in systems with demographic or environmental stochasticity, weaker competitors have the potential to exclude superior competitors, contributing to what is known as 'competitive indeterminacy'. The importance of such effects for natural communities is unknown, in part because it is difficult to demonstrate that multiple forms of stochasticity are present in these communities. Moreover, the effects of multiple forms of stochasticity on competitive outcomes are largely untested, even in theory. Here, we address these issues by examining the role of stochasticity in replicated communities of flour beetles (Tribolium sp.). To do so, we developed a set of two-species stochastic Ricker models incorporating four distinct forms of stochasticity: environmental stochasticity, demographic stochasticity, demographic heterogeneity and stochastic sex determination. By fitting models to experimental data, and simulating fit models to examine long- term behaviour, we found that both the duration of transient coexistence and the degree of competitive indeterminacy were sensitive to the forms of stochasticity included in our models. These findings suggest the current estimates of extinction risk, coexistence and time until competitive exclusion in communities may not be accurate when based on models that exclude relevant forms of stochasticity.

Keywords: Tribolium; competition; extinction risk; priority effects; stochasticity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Coleoptera*
  • Ecosystem
  • Models, Biological
  • Population Dynamics
  • Stochastic Processes
  • Tribolium*

Associated data

  • figshare/10.6084/m9.figshare.5593633