Precision length determination and in silico simulation in PCR of microsatellite repeat sequences

Electrophoresis. 2021 Jul;42(12-13):1323-1332. doi: 10.1002/elps.202100021. Epub 2021 Apr 23.

Abstract

Despite being commonplace, polymerase chain reactions (PCRs) still contain many unknown aspects. One example is microsatellite PCR, which is now widely used for various purposes from ecology to cancer medicine. Since this category of repetitive DNA sequences induces polymerase slippage not only in vivo but also in vitro, microsatellite PCR products comprise a complex combination of DNA fragments with various lengths and have, therefore, been empirically interpreted. The primary obstacle for understanding microsatellite PCR was the intrinsic inaccuracy in sizing of DNA fragments in capillary electrophoresis (CE), which, however, has been overcome by elucidating intrinsic sizing errors in each fragment length range. Secondly, the slippage properties of the thermostable polymerases were first clarified in detail using primer extension assays. Furthermore, using the obtained slippage parameters and our original program, we have first reconstructed microsatellite PCR in silico. The entire processes of complex microsatellite PCR have, thus, been more clearly understood.

Keywords: Capillary electrophoresis; DNA fragment analysis; Microsatellites; Polymerase chain reaction; Polymerase slippage.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • DNA / genetics
  • Electrophoresis, Capillary
  • Microsatellite Repeats* / genetics
  • Polymerase Chain Reaction

Substances

  • DNA