Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-β-induced neurotoxicity

Theranostics. 2021 Feb 25;11(9):4351-4362. doi: 10.7150/thno.52436. eCollection 2021.

Abstract

Background: Extracellular vesicles, including exosomes, are secreted by a variety of cell types in the central nervous system. Exosomes play a role in removing intracellular materials from the endosomal system. Alzheimer's disease (AD) is caused by an overproduction or reduced amyloid-beta (Aβ) peptide clearance. Increased Aβ levels in the brain may impair the exosome-mediated Aβ clearance pathway. Therapeutic ultrasound stimulation demonstrated its potential for promoting Aβ degradation efficiency in clinical trials. However, the underlying mechanism of ultrasound stimulation is still unclear. Methods: In this study, astrocytes, the most abundant glial cells in the brain, were used for exosome production. Post insonation, exosomes from ultrasound-stimulated HA cells (US-HA-Exo) were collected, nanoparticle tracking analysis and protein analysis were used to measure and characterize exosomes. Neuroprotective effect of US-HA-Exo in oligomeric Aβ42 toxicated SH-SY5Y cells was tested. Cellular uptake and distribution of exosomes were observed by flow cytometry and confocal laser scanning microscopy. Focused ultrasound (FUS) with microbubbles was employed for blood-brain-barrier opening to achieve brain-targeted exosome delivery. After US-HA-Exo/FUS treatment, amyloid-β plaque in APP/PS1 mice were evaluated by Aβ immunostaining and thioflavin-S staining. Results: We showed that ultrasound resulted in an almost 5-fold increase in the exosome release from human astrocytes. Exosomes were rapidly internalized in SH-SY5Y cells, and colocalized with FITC-Aβ42, causing a decreased uptake of FITC-Aβ42. CCk-8 test results showed that US-HA-Exo could mitigate Aβ toxicity to neurons in vitro. The therapeutic potential of US-HA-Exo/FUS delivery was demonstrated by a decrease in thioflavin-S-positive amyloid plaques and Aβ immuno-staining, a therapeutic target for AD in APP/PS1 transgenic mice. The iTRAQ-based proteomic quantification was performed to gain mechanistic insight into the ultrasound effect on astrocyte-derived exosomes and their ability to alleviate Aβ neurotoxicity. Conclusion: Our results imply that US-HA-Exo have the potential to provide neuroprotective effects to reverse oligomeric amyloid-β-induced cytotoxicity in vitro and, when combined with FUS-induced BBB opening, enable the clearance of amyloid-β plaques in vivo.

Keywords: Alzheimer's disease; astrocytes; exosomes; iTRAQ; ultrasound stimulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / metabolism
  • Amyloid beta-Peptides / metabolism*
  • Animals
  • Astrocytes / metabolism*
  • Blood-Brain Barrier / metabolism
  • Brain / metabolism
  • Cell Line
  • Cell Line, Tumor
  • Disease Models, Animal
  • Exosomes / metabolism*
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Transgenic
  • Neuroglia / metabolism
  • Neurons / metabolism*
  • Neuroprotective Agents / metabolism
  • Peptide Fragments / metabolism
  • Plaque, Amyloid / metabolism

Substances

  • Amyloid beta-Peptides
  • Neuroprotective Agents
  • Peptide Fragments