Development of an NMR-Based Platform for the Direct Structural Annotation of Complex Natural Products Mixtures

J Nat Prod. 2021 Apr 23;84(4):1044-1055. doi: 10.1021/acs.jnatprod.0c01076. Epub 2021 Mar 22.

Abstract

The development of new "omics" platforms is having a significant impact on the landscape of natural products discovery. However, despite the advantages that such platforms bring to the field, there remains no straightforward method for characterizing the chemical landscape of natural products libraries using two-dimensional nuclear magnetic resonance (2D-NMR) experiments. NMR analysis provides a powerful complement to mass spectrometric approaches, given the universal coverage of NMR experiments. However, the high degree of signal overlap, particularly in one-dimensional NMR spectra, has limited applications of this approach. To address this issue, we have developed a new data analysis platform for complex mixture analysis, termed MADByTE (Metabolomics and Dereplication by Two-Dimensional Experiments). This platform employs a combination of TOCSY and HSQC spectra to identify spin system features within complex mixtures and then matches spin system features between samples to create a chemical similarity network for a given sample set. In this report we describe the design and construction of the MADByTE platform and demonstrate the application of chemical similarity networks for both the dereplication of known compound scaffolds and the prioritization of bioactive metabolites from a bacterial prefractionated extract library.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Biological Products / chemistry*
  • Complex Mixtures / chemistry*
  • Magnetic Resonance Spectroscopy / methods*
  • Metabolomics
  • Software
  • User-Computer Interface

Substances

  • Biological Products
  • Complex Mixtures