Electrochemical methane production from CO2 for orbital and interplanetary refueling

iScience. 2021 Feb 24;24(3):102230. doi: 10.1016/j.isci.2021.102230. eCollection 2021 Mar 19.

Abstract

Renewable CO2 electrosynthesis is a potentially promising tool to utilize unwanted greenhouse gas. The greatest barrier to its adoption is rendering the production of CO2-derived chemicals cost-competitive, such that they have higher net value than their fossil-derived equivalents. Among the commodities that have been made using CO2, H2O, and electricity, CH4 is one of the simplest and most researched products. Technoeconomic studies of CO2 methanation make it clear that its high-value applications are limited without significant subsidy on Earth, where it competes with low-cost natural gas. In space, however, CO2 methanation via the Sabatier reaction is already used on the International Space Station to recycle atomic oxygen, and propulsion systems employing cryogenic liquid methane are in development for reusable rocket engines. Comparative analysis of power-to-gas using either CO2 electrosynthesis or the Sabatier reaction from an aerospace perspective identifies research priorities and parameters for deployment. Given its atmospheric CO2 concentration over 95%, Mars may present future opportunities for technology that could also help overcome our climate challenges on Earth.

Keywords: Chemical Engineering; Electrochemistry; Engineering; Process Engineering; Space Sciences.

Publication types

  • Review