Quantitative high-throughput assay to measure MC4R-induced intracellular calcium

J Mol Endocrinol. 2021 Apr 26;66(4):285-297. doi: 10.1530/JME-20-0285.

Abstract

The melanocortin-4 receptor (MC4R), a critical G-protein-coupled receptor (GPCR) regulating energy homeostasis, activates multiple signalling pathways, including mobilisation of intracellular calcium ([Ca2+]i). However, very little is known about the physiological significance of MC4R-induced [Ca2+]i since few studies measure MC4R-induced [Ca2+]i. High-throughput, read-out assays for [Ca2+]i have proven unreliable for overexpressed GPCRs like MC4R, which exhibit low sensitivity mobilising [Ca2+]i. Therefore, we developed, optimised, and validated a robust quantitative high-throughput assay using Fura-2 ratio-metric calcium dye and HEK293 cells stably transfected with MC4R. The quantitation enables direct comparisons between assays and even between different research laboratories. Assay conditions were optimised step-by-step to eliminate interference from stretch-activated receptor increases in [Ca2+]i and to maximise ligand-activated MC4R-induced [Ca2+]i. Calcium imaging was performed using a PheraStar FS multi-well plate reader. Probenecid, included in the buffers to prevent extrusion of Fura-2 dye from cells, was found to interfere with the EGTA-chelation of calcium, required to determine Rmin for quantitation of [Ca2+]i. Therefore, we developed a method to determine Rmin in specific wells without probenecid, which was run in parallel with each assay. The validation of the assay was shown by reproducible α-melanocyte-stimulating hormone (α-MSH) concentration-dependent activation of the stably expressed human MC4R (hMC4R) and mouse MC4R (mMC4R), inducing increases in [Ca2+]i, for three independent experiments. This robust, reproducible, high-throughput assay that quantitatively measures MC4R-induced mobilisation of [Ca2+]i in vitro has potential to advance the development of therapeutic drugs and understanding of MC4R signalling associated with human obesity.

Keywords: G-protein-coupled receptor; calcium; cell signalling; high-throughput screening; melanocortin-4 receptor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence / genetics
  • Calcium / isolation & purification*
  • Calcium / metabolism
  • Calcium Signaling / genetics
  • Cyclic AMP / metabolism
  • Energy Metabolism / genetics
  • HEK293 Cells
  • High-Throughput Screening Assays*
  • Homeostasis / genetics
  • Humans
  • Protein Binding / genetics
  • Receptor, Melanocortin, Type 4 / genetics*
  • Signal Transduction / genetics

Substances

  • MC4R protein, human
  • Receptor, Melanocortin, Type 4
  • Cyclic AMP
  • Calcium