Water-processable, biodegradable and coatable aquaplastic from engineered biofilms

Nat Chem Biol. 2021 Jun;17(6):732-738. doi: 10.1038/s41589-021-00773-y. Epub 2021 Mar 18.

Abstract

Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Here, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic, which can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water processability and biodegradability makes aquaplastic a unique material worthy of further exploration for packaging and coating applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biodegradation, Environmental
  • Bioengineering
  • Biofilms*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Plastics / chemistry*
  • Proteins / chemistry
  • Solvents
  • Tensile Strength
  • Water / chemistry*

Substances

  • Plastics
  • Proteins
  • Solvents
  • Water