Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies

Biol Chem. 2021 Mar 19;402(7):769-783. doi: 10.1515/hsz-2020-0375. Print 2021 Jun 25.

Abstract

Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 μg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30-60% inhibition of biofilm formation in K. pneumonia, and 44-70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.

Keywords: biofilm eradication; biofilm inhibition; molecular docking; pyocyanin; quorum sensing; selenocystine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Biofilms / drug effects
  • Cystine / analogs & derivatives*
  • Cystine / chemistry
  • Cystine / pharmacology
  • Dose-Response Relationship, Drug
  • Humans
  • Klebsiella pneumoniae / drug effects*
  • Klebsiella pneumoniae / growth & development
  • Microbial Sensitivity Tests
  • Organoselenium Compounds / chemistry
  • Organoselenium Compounds / pharmacology*
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / growth & development
  • Quorum Sensing / drug effects
  • Respiratory Tract Infections / drug therapy*
  • Respiratory Tract Infections / microbiology

Substances

  • Anti-Bacterial Agents
  • Organoselenium Compounds
  • selenocystine
  • Cystine