Thermoregulation of the bovine scrotum 2: simulated acute and chronic heat waves reduces the scrotal thermoregulatory capability of Wagyu bulls

Int J Biometeorol. 2022 Feb;66(2):251-262. doi: 10.1007/s00484-021-02108-x. Epub 2021 Mar 17.

Abstract

The objective of this study was to investigate the effect of acute and chronic heat load events on scrotal temperature (ST), body temperature (BT) and bull behaviour, and to examine the interrelationship between these parameters; the underlying hypothesis was that adverse heat treatments delivered in a temperature controlled environment will lead to thermoregulatory dysfunction of the bull scrotum. Six sexually mature Wagyu bulls were used in this study with data loggers surgically implanted into the abdominal cavity and scrotum. Body temperate and ST were recorded at 30-min intervals for the duration of the study. There were two housing locations used throughout the study, outdoor pens and climate control rooms. The study was designed as a four-phase crossover design with two heat treatments: (1) a 5-day acute challenge, and (2) a 14-day chronic challenge. The study was also blocked by phase to control for systematic change between phases with a thermoneutral (TN) phase in outdoor pens between each heat challenge. Observations within the climate rooms were conducted at 1-h intervals and data on panting scores (PS), respiration rate (RR), posture (standing or lying) and general behaviours (feeding, drinking, ruminating) recorded. Ambient temperature (AT, °C) and relative humidity (RH, %) were obtained at 10-min intervals and used to calculate the temperature humidity index (THI). Multiple models were conducted using a linear mixed effects model that contained different permutations of date and time factors and interactions as well as inclusion of an autoregressive parameter. The strongest model based on Akaike's information criterion (AIC) was selected and further analysed. Ambient conditions during heat treatments were consistent with heat load and bulls showed typical physiological symptoms of the same. Maximum ST for acute and chronic treatments occurred once AT had exceeded 34 °C for at least 3 h (acute 35.59 °C at 1500 h; chronic 35.18 °C at 1400 h), whereas during TN conditions, maximum ST was at 2100 h. All phases showed variation in ST throughout the day. There were strong cross correlations between ST and RR during the heat treatments (acute r = 0.918, P < 0.0001; chronic r = 0.916, P < 0.0001), but not during TN (r = 0.411, P < 0.05). Our results confirmed that the ST of the bulls used in this study was not held at a constant temperature and that there was a possible connection between ST and RR. We have shown that during a period of heat load, the thermoregulatory mechanisms thought responsible for maintaining bovine ST appear to breakdown.

Keywords: Body temperature; Heat load; Respiratory dynamics; Scrotal thermoregulation; Temperature humidity index.

Publication types

  • Randomized Controlled Trial, Veterinary

MeSH terms

  • Animals
  • Body Temperature
  • Body Temperature Regulation
  • Cattle
  • Cross-Over Studies
  • Hot Temperature*
  • Humidity
  • Male
  • Scrotum*