Contrasting drivers of diversity in hosts and parasites across the tropical Andes

Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):e2010714118. doi: 10.1073/pnas.2010714118.

Abstract

Geographic turnover in community composition is created and maintained by eco-evolutionary forces that limit the ranges of species. One such force may be antagonistic interactions among hosts and parasites, but its general importance is unknown. Understanding the processes that underpin turnover requires distinguishing the contributions of key abiotic and biotic drivers over a range of spatial and temporal scales. Here, we address these challenges using flexible, nonlinear models to identify the factors that underlie richness (alpha diversity) and turnover (beta diversity) patterns of interacting host and parasite communities in a global biodiversity hot spot. We sampled 18 communities in the Peruvian Andes, encompassing ∼1,350 bird species and ∼400 hemosporidian parasite lineages, and spanning broad ranges of elevation, climate, primary productivity, and species richness. Turnover in both parasite and host communities was most strongly predicted by variation in precipitation, but secondary predictors differed between parasites and hosts, and between contemporary and phylogenetic timescales. Host communities shaped parasite diversity patterns, but there was little evidence for reciprocal effects. The results for parasite communities contradicted the prevailing view that biotic interactions filter communities at local scales while environmental filtering and dispersal barriers shape regional communities. Rather, subtle differences in precipitation had strong, fine-scale effects on parasite turnover while host-community effects only manifested at broad scales. We used these models to map bird and parasite turnover onto the ecological gradients of the Andean landscape, illustrating beta-diversity hot spots and their mechanistic underpinnings.

Keywords: Neotropics; community composition; generalized dissimilarity modeling; mountains; phylobetadiversity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biodiversity*
  • Ecosystem*
  • Hemiptera / classification
  • Hemiptera / genetics
  • Hemiptera / parasitology*
  • Host-Parasite Interactions*
  • Nonlinear Dynamics
  • Phylogeny