Protective role of Gremlin-1 in myocardial function

Eur J Clin Invest. 2021 Jul;51(7):e13539. doi: 10.1111/eci.13539. Epub 2021 Mar 17.

Abstract

Background: Gremlin-1 is a cystine knot protein and is expressed in organs developing fibrosis. Transient ischaemia leads to myocardial fibrosis, a major determinant of impaired myocardial function.

Materials and methods: Expression of Gremlin-1 was investigated in infarcted myocardium by real-time PCR, Western blot analysis, histological and immunohistochemistry staining. We further elaborated the colocalization of Gremlin-1 and TGF-β proteins by confocal microscopy and co-immunoprecipitation experiments. The interaction between Gremlin-1 and TGF-β was analysed by photon correlation spectroscopy. Gremlin-1 modulation of the TGF-β-dependent collagen I synthesis in fibroblasts was investigated using ELISA and immunohistochemistry experiments. The effect of prolonged administration of recombinant Gremlin-1 on myocardial function following ischaemia/reperfusion was accessed by echocardiography and immunohistochemistry.

Results: Gremlin-1 is expressed in myocardial tissue and infiltrating cells after transient myocardial ischaemia (P < .05). Gremlin-1 colocalizes with the pro-fibrotic cytokine transforming growth factor-β (TGF-β) expressed in fibroblasts and inflammatory cell infiltrates (P < .05). Gremlin-1 reduces TGF-β-induced collagen production of myocardial fibroblasts by approximately 20% (P < .05). We found that Gremlin-1 binds with high affinity to TGF-β (KD = 54 nmol/L) as evidenced by photon correlation spectroscopy and co-immunoprecipitation. intravenous administration of m Gremlin-1-Fc, but not of equivalent amount of Fc control, significantly reduced infarct size by approximately 20%. In the m Gremlin-1-Fc group, infarct area was reduced by up to 30% in comparison with mice treated with Fc control (I/LV: 4.8 ± 1.2% vs 6.0 ± 1.2% P < .05; I/AaR: 15.2 ± 1.5% vs 21.1 ± 5%, P < .05).

Conclusions: The present data disclose Gremlin-1 as an antagonist of TGF-β and presume a role for Gremlin-1/TGF-β interaction in myocardial remodelling following myocardial ischaemia.

Keywords: Gremlin-1; collagen; fibrosis; myocardial infarction; transforming growth factor beta.

MeSH terms

  • Animals
  • Collagen Type I / metabolism
  • Echocardiography
  • Endothelial Cells / metabolism
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism*
  • Fibrosis
  • Heart / diagnostic imaging
  • Heart / drug effects
  • Heart / physiopathology*
  • Humans
  • Immunoprecipitation
  • Intercellular Signaling Peptides and Proteins / genetics*
  • Intercellular Signaling Peptides and Proteins / metabolism
  • Intercellular Signaling Peptides and Proteins / pharmacology
  • Mice
  • Microscopy, Confocal
  • Myocardial Infarction / genetics*
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / pathology
  • Myocardial Infarction / physiopathology
  • Myocardial Reperfusion Injury / genetics*
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / physiopathology
  • Myocardium / pathology*
  • Recombinant Proteins
  • Transforming Growth Factor beta / drug effects
  • Transforming Growth Factor beta / metabolism*
  • Ventricular Remodeling / genetics

Substances

  • Collagen Type I
  • GREM1 protein, human
  • Grem1 protein, mouse
  • Intercellular Signaling Peptides and Proteins
  • Recombinant Proteins
  • Transforming Growth Factor beta