Electrically programmable magnetoresistance in [Formula: see text]-based magnetic tunnel junctions

Sci Rep. 2021 Mar 16;11(1):6027. doi: 10.1038/s41598-021-84749-x.

Abstract

We report spin-dependent transport properties and I-V hysteresis characteristics in an [Formula: see text]-based magnetic tunnel junction (MTJ). The bipolar resistive switching and the magnetoresistances measured at high resistance state (HRS) and low resistance state (LRS) yield four distinctive resistive states in a single device. The temperature dependence of resistance at LRS suggests that the resistive switching is not triggered by the metal filaments within the [Formula: see text] layer. The role played by oxygen vacancies in [Formula: see text] is the key to determine the resistive state. Our study reveals the possibility of controlling the multiple resistive states in a single [Formula: see text]-based MTJ by the interplay of both electric and magnetic fields, thus providing potential applications for future multi-bit memory devices.