Color-detuning-dynamics-based quantum sensing with dressed states driving

Opt Express. 2021 Feb 15;29(4):5358-5366. doi: 10.1364/OE.413637.

Abstract

Exploring quantum technology to precisely measure physical quantities is a meaningful task for practical scientific researches. Here, we propose a novel quantum sensing model based on color detuning dynamics with dressed states driving (DSD) in stimulated Raman adiabatic passage. The model is valid for sensing different physical quantities, such as magnetic field, mass, rotation and so on. For different sensors, the used systems can range from macroscopic scale, e.g. optomechanical systems, to microscopic nanoscale, e.g. solid spin systems. The dynamics of color detuning of DSD passage indicates the sensitivity of sensors can be enhanced by tuning system with more adiabatic or accelerated processes in different color detuning regimes. To show application examples, we apply our approach to build optomechanical mass sensor and solid spin magnetometer with practical parameters.