The effects of aging on the mechanical properties of the vitreous

J Biomech. 2021 Apr 15:119:110310. doi: 10.1016/j.jbiomech.2021.110310. Epub 2021 Feb 24.

Abstract

The vitreous body is a viscoelastic gel-like network that fills the space between the lens and the retina in the eye. With aging, the vitreous undergoes a liquefaction process in which liquid pockets form in the gel network, thereby motivating the detachment of the vitreous from the retina in a process known as posterior vitreous detachment (PVD). The PVD process may lead to the formation of floaters and even result in partial or complete loss of vision. Experiments show that the liquefaction and the PVD processes alter the mechanical properties of the vitreous. In this work, we propose a microscopically motivated model that characterizes the changes in the mechanical properties of the vitreous due to aging. To this end, we distinguish between four vitreous states: a homogeneous vitreous, a liquefied vitreous, a vitreous that undergoes partial PVD, and a vitreous with full PVD. The model predicts the time-dependent and the steady-state response of the vitreous in each of the four states. The proposed framework is validated through a comparison with various experimental findings and captures the softening of the vitreous due to aging. We illustrate the importance of the age at which the PVD process begins and of the rate of the detachment process. In addition, we introduce a quantifiable parameter that describes the stage of PVD in the eye. Lastly, we employ our model to investigate the possibility of restoring the mechanical properties of a vitreous that has undergone PVD through the addition of reinforcing fibers to the gel. This work provides insight into the consequences of the age-related changes in the microstructure of the eye and serves as a motivation for new therapeutic measures.

Keywords: Age-related degradation of vitreous; Mechanics of the eye; Multi-scale modeling; Vitreous.

MeSH terms

  • Eye Diseases*
  • Humans
  • Retina
  • Vitreous Body
  • Vitreous Detachment*