Plasmonic hollow fibers with distributed inner-wall hotspots for direct SERS detection of flowing liquids

Opt Lett. 2021 Mar 15;46(6):1369-1372. doi: 10.1364/OL.415733.

Abstract

Plasmonic hollow fibers are fabricated by coating silver-/ gold-alloyed nanoparticles (Ag-Au-ANPs) onto the inner walls of hollow fibers. In this Letter, the Ag-Au-ANPs were synthesized chemically and dissolved in acetone to prepare a colloidal solution, flowed subsequently through the hollow fiber multiple times so that a thin layer of colloidal Ag-Au-ANPs was produced on the inner wall. Annealing at 400°C enabled melting/aggregation of the metallic nanoparticles and consequent formation of closely arranged plasmonic nanostructures fixed solidly on the inner wall. A surface-enhanced Raman scattering (SERS) mechanism was thus established for the liquids flowing through the hollows. The SERS measurements show an enhancement factor >104 for such plasmonic hollow fibers in the direct detection of R6G/ethanol solutions. Confinement of the excitation laser energy inside the hollow space represents an additional contribution to the enhancement mechanism. This is a promising design for the direct on-site SERS detection of molecules in flowing liquids with low concentrations.