Development of high frequency piezocomposite with hexagonal pillars via cold ablation process

Ultrasonics. 2021 Jul:114:106404. doi: 10.1016/j.ultras.2021.106404. Epub 2021 Mar 6.

Abstract

This paper reports on the fabrication of 1-3 piezocomposite with hexagonal pillars for high frequency ultrasonic transducer based on the cold ablation technique. The piezocomposite with hexagonal pillars was designed, simulated, and fabricated using an ultraviolet picosecond laser. It performs better than the piezocomposite with other pillar shapes like square. The edge length and height of the hexagonal PZT pillar were 10 μm and 36 μm, the width of the kerf was about 5 μm. The 1-3 piezocomposite with a resonance frequency of 51.2 MHz and a coupling coefficient of 0.69 was fabricated. The transducer with fabricated 1-3 piezocomposite was prototyped and characterized. Compared to the conventional dice-and-fill technique, the cola ablation process allows for the manufacturing of 1-3 piezocomposites with higher variability of pillar design and distribution as well as smaller structural size. It suggests that the cold ablation process proves to be suitable for the fabrication of high frequency composite and transducers.

Keywords: 1–3 Piezocomposite; Cold ablation; High frequency transducer.