Spectrofluorometric Insights into the Application of PAM Fluorometry in Photosynthetic Research

Photochem Photobiol. 2021 Sep;97(5):991-1000. doi: 10.1111/php.13413. Epub 2021 May 1.

Abstract

Although pulse amplitude modulation (PAM) fluorometry has revolutionized photosynthetic studies, Photosynthetic Electron Transport Rate (ETR) cannot be measured using PAM technology in some organisms. We compare in vivo absorbance information on a selection of photosynthetic organisms using an integrating sphere spectrophotometry on a variety of oxygenic and nonoxygenic photo-organisms and provide fluorescence data to help in understanding why PAM technology is unsuccessful on some organisms, particularly cyanobacteria. The study includes anoxygenic photosynthetic bacteria: Afifella marina, Rhodopseudomonas palustris and Thermochromatium which are all RC-2 type photosynthetic bacteria (Bacteriochlorophyll a or BChl a) which are known to have measureable delayed fluorescence, Yield and hence measureable ETR. The common unicellular green alga, Chlorella sp (Chl a + b) uses the same primary photosynthetic pigments as vascular plants. Comparisons are made to some other representative oxygenic unicellular organisms: Trebouxia (Chlorophyta, Chl a + b), Chaetoceros (a diatom, Chl a + c1 c2 ) and the unusual cyanobacterium Acaryochloris marina which has Chl d + a but uses Chl d as its primary photosynthetic pigment. Synechococcus R-2 (Cyanobacteria) has only Chl a. Its fluorescence is outside the range normally used for measuring photosynthesis using PAM technology: delayed fluorescence is not readily detectable.

Publication types

  • Research Support, Non-U.S. Gov't