Reduced Fracture Strength of 2D Materials Induced by Interlayer Friction

Small. 2021 Apr;17(13):e2005996. doi: 10.1002/smll.202005996. Epub 2021 Mar 9.

Abstract

The potential applications of 2D layered materials (2DLMs) as the functional membranes in flexible electronics and nano-electromechanical systems emphasize the role of the mechanical properties of these materials. Interlayer interactions play critical roles in affecting the mechanical properties of 2DLMs, and nevertheless the understanding of their relationship remains incomplete. In the present work, it is reported that the fracture strength of few-layer (FL) WS2 can be weakened by the interlayer friction among individual layers with the assistance of finite element simulations and density functional theory (DFT) calculations. The reduced fracture strength can be also observed in FL WSe2 but with a lesser extent, which is attributed to the difference in the interlayer sliding energies of WS2 and WSe2 as confirmed by DFT calculations. Moreover, the tip-membrane friction can give rise to the underestimation of the Young's modulus except for the membrane nonlinearity. These results give deep insights into the influence of interfacial interactions on the mechanical properties of 2DLMs, and suggest that importance should be also attached to the interlayer interactions during the design of nanodevices with 2DLMs as the functional materials.

Keywords: 2D layered materials; AFM nanoindentations; DFT calculations; interlayer friction; reduced fracture strength.