Thermodynamic Implications and Time Evolution of the Interactions of Near-Infrared PbS Quantum Dots with Human Serum Albumin

ACS Omega. 2021 Feb 12;6(8):5569-5581. doi: 10.1021/acsomega.0c05974. eCollection 2021 Mar 2.

Abstract

Near-infrared (NIR)-emitting PbS quantum dots (QDs) are endowed with good stability, high quantum yield, and long lifetime in the body, so they are promising agents in biological imaging. They quickly form the so-called "protein corona" through nonspecific adsorption with proteins in biological fluids once upon exposure to the biological system. Here, PbS QDs and human serum albumin (HSA) were selected as the model system. Fluorescence quenching spectroscopic studies indicated a static quenching process caused by the addition of PbS QDs, which was corroborated by the UV-vis absorption spectroscopy and fluorescence lifetime. Thermodynamic parameters were obtained by the fluorescence quenching method. The enthalpy change and entropy change were well correlated with the "enthalpy-entropy compensation" (EEC) equation summarized in this work. The slope (α = 1.08) and the intercept (TΔS 0 = 34.44 kJ mol-1) indicated that the interaction resembled a protein-protein association. The both negative signs of enthalpy change and entropy change were elucidated by a proposed "two-step association-interaction" (TSAI) model. Agarose gel electrophoresis (AGE) and dynamic light scattering (DLS) showed that the binding ratio was roughly 2:1 (HSA/QDs), resembling sandwich-like structures. Furthermore, the secondary structure of HSA depended on the concentration of added QDs and the incubation time. The results preliminarily uncovered the physicochemical properties of QDs in the presence of proteins and elucidated the role of time evolution. These will inspire us to make the fluorescent QDs more biocompatible and use them in a proper way.