Enhancing One-Dimensional Charge Transport in Metal-organic Framework Hexagonal Nanorods for Electrocatalytic Oxygen Evolution

ChemSusChem. 2021 Apr 22;14(8):1830-1834. doi: 10.1002/cssc.202100179. Epub 2021 Mar 10.

Abstract

Metal-organic frameworks (MOFs) have exhibited huge potential in electrocatalytic fields. However, the intrinsic low conductivity and the blockage of metal active sites by organic linkers still seriously hinder their large-scale application. In this study, as a proof of principle, constructing cofacial π-π stacking in the terminal ligand (4,4'-bipyridine) of a Ni/Fe-chain-based MOF to fabricate strong π-π interaction, in combination with unique hexagonal nanorod (HXR) structure, is found to be an effective strategy to enhance one-dimensional charge carrier efficiency and thus achieve excellent activity in the oxygen evolution reaction (OER). The approach yields a high turnover frequency (4.54 s-1 ) in well-designed bimetallic chain-based MOFs (NiFe-HXR) at an overpotential of 350 mV, which is about 8.7 and 34.9 times higher than those in Ni-HXR (0.52 s-1 ) and IrO2 (0.13 s-1 ), respectively. This work effectively combines "through-bond" channel in chain-based structure of NiFe-HXR and "through-space" transport between face-to-face terminal ligands, thus resulting in outstanding OER activity. This strategy of modulating the structure chemistry and morphology of MOFs to promote the OER may open a new perspective to synthesize MOFs for energy-relevant electrochemical reactions.

Keywords: charge transport; electrocatalysis; metal-organic frameworks; nanostructures; oxygen evolution reaction.