The effect of ammonia and formic acid on the oxidation of CO via a simple Criegee intermediate

Phys Chem Chem Phys. 2021 Mar 11;23(9):5392-5406. doi: 10.1039/d0cp05270a.

Abstract

In the present work, we have investigated the effect of catalysts (ammonia, formic acid, ammonia dimer, and ammonia water complex) on the oxidation of CO via a simple Criegee intermediate by means of kinetics and quantum chemical calculations. Our finding suggests that, in the presence of ammonia and ammonia dimer the title reaction becomes a barrierless reaction with respect to the isolated reactants (energy barrier = ∼-0.53 and ∼-0.27 kcal mol-1, respectively), whereas in the presence of formic acid and ammonia-water complex the energy barrier of the CI + CO reaction becomes ∼2.84 and ∼0.82 kcal mol-1, respectively. However, among all the catalysts, due to the very low concentration of the ammonia dimer, its contribution towards the title reaction is insignificant as compared to that of the other catalysts. In addition, the relative rate of the other catalyzed channels against the uncatalyzed reaction suggests that the rate of the catalyzed CI + CO reaction is ∼8-10 orders of magnitude lower than the uncatalyzed reaction. However, the concentration of bimolecular complexes formed in the presence of catalysts (except the ammonia dimer) is ∼1-8 orders of magnitude higher than the concentration of bimolecular complexes formed in the uncatalyzed reaction.