Antioxidant Activity of Sprouts Extracts Is Correlated with Their Anti-Obesity and Anti-Inflammatory Effects in High-Fat Diet-Fed Mice

Evid Based Complement Alternat Med. 2021 Feb 16:2021:8367802. doi: 10.1155/2021/8367802. eCollection 2021.

Abstract

Obesity is closely associated with oxidative stress and chronic inflammation leading to related metabolic diseases. Some natural extracts or polyphenols reportedly possess anti-obesity and anti-inflammatory effects as well as antioxidant activity. In this study, we assessed the correlations between the antioxidant, anti-obesity, and anti-inflammatory activities of plant extracts with potent antioxidant activity in diet-induced obese mice. Sprouts of Cedrela sinensis (CS) and Oenothera biennis L. (OB) were selected as the most potent antioxidant plant based on analysis of in vitro antioxidant activity of the extracts of ten different edible plants. C57BL/6 mice were fed with a high-fat diet (HFD) and orally treated with 50% ethanol extract of CS or OB at 50 or 100 mg/kg body weight 5 days a week for 14 weeks. Body weight gain, weight of adipose tissue, adipocyte size, and levels of lipid metabolism, inflammation, and oxidative stress markers were investigated. The CS or OB extract reduced body weight gain, visceral adipose tissue weight, adipocyte size, and plasma leptin levels, and expressions of adipogenic genes (PPARγ and fatty acid synthase) in the adipose tissue and liver of HFD-fed mice. Both extracts also reduced mRNA levels of pro-inflammatory cytokines (IL-6 and TNF-α) and oxidative stress-related genes (heme oxygenase- (HO-) 1 and p40phox). Body weight gain of mice was significantly correlated with visceral adipose tissue weight and adipocyte size. Body weight gain and adipocyte size were significantly correlated with plasma total cholesterol and 8-epi PGF2α levels, mRNA levels of leptin, HO-1, p40phox, and CD-11 in the adipose tissue, and mRNA levels of TNF-α in the adipose tissue and liver. These results suggest that the CS and OB extracts with potent antioxidant activity may inhibit fat deposition in adipose tissue and subsequent inflammation.