Spin relaxation in radical pairs from the stochastic Schrödinger equation

J Chem Phys. 2021 Feb 28;154(8):084121. doi: 10.1063/5.0040519.

Abstract

We show that the stochastic Schrödinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs. Electron spin relaxation effects arising from fluctuations in the spin Hamiltonian are straightforward to include in this approach, and their treatment can be combined with a highly efficient stochastic evaluation of the trace over nuclear spin states that is required to compute experimental observables. These features are illustrated in example applications to a flavin-tryptophan radical pair of interest in avian magnetoreception and to a problem involving spin-selective radical pair recombination along a molecular wire. In the first of these examples, the SSE is shown to be both more efficient and more widely applicable than a recent stochastic implementation of the Lindblad equation, which only provides a valid treatment of relaxation in the extreme-narrowing limit. In the second, the exact SSE results are used to assess the accuracy of a recently proposed combination of Nakajima-Zwanzig theory for the spin relaxation and Schulten-Wolynes theory for the spin dynamics, which is applicable to radical pairs with many more nuclear spins. We also analyze the efficiency of trace sampling in some detail, highlighting the particular advantages of sampling with SU(N) coherent states.