In-vitro evaluation of the immunomodulatory effects of Baricitinib: Implication for COVID-19 therapy

J Infect. 2021 Apr;82(4):58-66. doi: 10.1016/j.jinf.2021.02.023. Epub 2021 Feb 25.

Abstract

Objective: Baricitinib seems a promising therapy for COVID-19. To fully-investigate its effects, we in-vitro evaluated the impact of baricitinib on the SARS-CoV-2-specific-response using the whole-blood platform.

Methods: We evaluated baricitinib effect on the IFN-γ-release and on a panel of soluble factors by multiplex-technology after stimulating whole-blood from 39 COVID-19 patients with SARS-CoV-2 antigens. Staphylococcal Enterotoxin B (SEB) antigen was used as a positive control.

Results: In-vitro exogenous addition of baricitinib significantly decreased IFN-γ response to spike- (median: 0.21, IQR: 0.01-1; spike+baricitinib 1000 nM median: 0.05, IQR: 0-0.18; p < 0.0001) and to the remainder-antigens (median: 0.08 IQR: 0-0.55; remainder-antigens+baricitinib 1000 nM median: 0.03, IQR: 0-0.14; p = 0.0013). Moreover, baricitinib significantly decreased SEB-induced response (median: 12.52, IQR: 9.7-15.2; SEB+baricitinib 1000 nM median: 8, IQR: 1.44-12.16; p < 0.0001). Baricitinib did modulate other soluble factors besides IFN-γ, significantly decreasing the spike-specific-response mediated by IL-17, IL-1β, IL-6, TNF-α, IL-4, IL-13, IL-1ra, IL-10, GM-CSF, FGF, IP-10, MCP-1, MIP-1β (p ≤ 0.0156). The baricitinib-decreased SARS-CoV-2-specific-response was observed mainly in mild/moderate COVID-19 and in those with lymphocyte count ≥1 × 103/µl.

Conclusions: Exogenous addition of baricitinib decreases the in-vitro SARS-CoV-2-specific response in COVID-19 patients using a whole-blood platform. These results are the first to show the effects of this therapy on the immune-specific viral response.

Keywords: Baricitinib; COVID-19; IGRA; SARS-CoV-2; Specific immune-response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Azetidines
  • COVID-19 Drug Treatment*
  • Cytokines
  • Humans
  • Purines
  • Pyrazoles
  • SARS-CoV-2
  • Sulfonamides

Substances

  • Azetidines
  • Cytokines
  • Purines
  • Pyrazoles
  • Sulfonamides
  • baricitinib