Sodium acetate ameliorated systemic and renal oxidative stress in high-fructose insulin-resistant pregnant Wistar rats

Naunyn Schmiedebergs Arch Pharmacol. 2021 Jul;394(7):1425-1435. doi: 10.1007/s00210-021-02058-6. Epub 2021 Feb 27.

Abstract

Pregnancy is an insulin-resistant condition especially at near term predisposing maternal kidneys to hyperinsulinemia-induced oxidative stress. The impact of fructose on renal metabolic dysregulation and oxidative stress in pregnancy requires elucidation. Short-chain fatty acids (SCFAs) are known for protective roles in oxidative stress conditions. Therefore, the study aimed at investigating fructose-induced glucose dysregulation and renal oxidative stress in pregnant and non-pregnant rats and the possible preventive role of SCFA, acetate. Thirty female Wistar rats were grouped (n = 5/group). Three groups were made pregnant (P); the other three remained non-pregnant (NP). Both pregnant and non-pregnant rats received drinking water (control), 10% fructose (w/v) (NP+F or P+F), and 10% (w/v) fructose plus sodium acetate (200 mg/kg) (NP+F+A or P+F+A) for 3 weeks. Renal and plasma glutathione antioxidant index (GSH/GSSG), G6PDH, and adenosine were significantly lower in NP+F and P+F groups compared with control while renal and plasma adenosine deaminase (ADA), xanthine oxidase (XO), uric acid (UA), lactate dehydrogenase (LDH), and malonaldehyde (MDA) were significantly elevated in NP+F and P+F groups compared with controls. HOMA-IR showed marked impairment in both NP+F and P+F groups. The P+F group revealed greater suppression in plasma and renal G6PDH-dependent antioxidant index, adenosine, and aggravation of LDH, MDA compared with the NP+F group (p < 0.05). Sodium acetate reduces plasma and renal surrogate oxidative stress markers, improved G6PD-dependent antioxidant index, and HOMA-IR in NP+F and P+F groups. Pregnancy exacerbates fructose-induced insulin resistance and renal oxidative stress whereas acetate ameliorated fructose-induced redox and glucose dysregulation in pregnant and non-pregnant rats.

Keywords: Fructose; Glucose dysregulation; Oxidative stress; Pregnancy; Sodium acetate.

MeSH terms

  • Animals
  • Female
  • Fructose / administration & dosage
  • Fructose / toxicity*
  • Insulin Resistance / physiology*
  • Kidney / drug effects*
  • Kidney / metabolism*
  • Organ Size / drug effects
  • Organ Size / physiology
  • Oxidative Stress / drug effects*
  • Oxidative Stress / physiology
  • Pregnancy
  • Rats
  • Rats, Wistar
  • Sodium Acetate / pharmacology*

Substances

  • Fructose
  • Sodium Acetate