Trap Energy Upconversion-Like Near-Infrared to Near-Infrared Light Rejuvenateable Persistent Luminescence

Adv Mater. 2021 Apr;33(15):e2008722. doi: 10.1002/adma.202008722. Epub 2021 Feb 26.

Abstract

Persistent-luminescence phosphors (PLPs) have a wide variety of applications in the fields of photonics and biophotonics due to their ultralong afterglow lifetime. However, the existing PLPs are charged and recharged with short-wavelength high-energy photons or inconvenient and potentially risky X-ray beams. To date, deep tissue penetrable NIR light has mainly been used for photostimulated afterglow emission, which continues to decay and weaken after each cycle, Herein, a new paradigm of trap energy upconversion-like near-infrared (NIR) to near-infrared light rejuvenateable persistent luminescence in bismuth-doped calcium stannate phosphors and nanoparticles is reported. In contrast to the existing PLPs and persistent-luminescence nanoparticles, the materials enable the occurrence of a reversed transition of the carriers from a deep-level energy trap to a shallow-level trap upon excitation by low-energy NIR photons. Thus these new materials can be charged circularly via deep-tissue penetrable NIR photons, which is unable to be done for existing PLPs, and emit afterglow signals. This conceptual work will lay the foundation to design new categories of NIR-absorptive-NIR-emissive PLPs and nanoparticles featuring physically harmless and deep tissue penetrable NIR light renewability and sets the stage for numerous biological applications, which have been limited by current materials.

Keywords: bismuth doping; calcium stannate; energy traps; nanoparticles; persistent luminescence; phosphors.

Publication types

  • Review