The Pharus latifolius genome bridges the gap of early grass evolution

Plant Cell. 2021 May 31;33(4):846-864. doi: 10.1093/plcell/koab015.

Abstract

The grass family (Poaceae) includes all commercial cereal crops and is a major contributor to biomass in various terrestrial ecosystems. The ancestry of all grass genomes includes a shared whole-genome duplication (WGD), named rho (ρ) WGD, but the evolutionary significance of ρ-WGD remains elusive. We sequenced the genome of Pharus latifolius, a grass species (producing a true spikelet) in the subfamily Pharoideae, a sister lineage to the core Poaceae including the (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) and Bambusoideae, Oryzoideae, and Pooideae (BOP) clades. Our results indicate that the P. latifolius genome has evolved slowly relative to cereal grass genomes, as reflected by moderate rates of molecular evolution, limited chromosome rearrangements and a low rate of gene loss for duplicated genes. We show that the ρ-WGD event occurred approximately 98.2 million years ago (Ma) in a common ancestor of the Pharoideae and the PACMAD and BOP grasses. This was followed by contrasting patterns of diploidization in the Pharus and core Poaceae lineages. The presence of two FRIZZY PANICLE-like genes in P. latifolius, and duplicated MADS-box genes, support the hypothesis that the ρ-WGD may have played a role in the origin and functional diversification of the spikelet, an adaptation in grasses related directly to cereal yields. The P. latifolius genome sheds light on the origin and early evolution of grasses underpinning the biology and breeding of cereals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Composition
  • Biological Evolution*
  • Chromosomes, Plant
  • Flowers / genetics
  • Flowers / growth & development
  • Gene Duplication
  • Genome, Plant*
  • Multigene Family
  • Phylogeny
  • Plant Proteins / genetics
  • Poaceae / genetics*

Substances

  • Plant Proteins