Deep sequencing analysis of M184V/I mutation at the switch and at the time of virological failure of boosted protease inhibitor plus lamivudine or boosted protease inhibitor maintenance strategy (substudy of the ANRS-MOBIDIP trial)

J Antimicrob Chemother. 2021 Apr 13;76(5):1286-1293. doi: 10.1093/jac/dkab002.

Abstract

Background: The ANRS12286/MOBIDIP trial showed that boosted protease inhibitor (bPI) plus lamivudine dual therapy was superior to bPI monotherapy as maintenance treatment in subjects with a history of M184V mutation.

Objectives: We aimed to deep analyse the detection of M184V/I variants at time of switch and at the time of virological failure (VF).

Methods: Ultra-deep sequencing (UDS) was performed on proviral HIV-DNA at inclusion among 265 patients enrolled in the ANRS 12026/MOBIDIP trial, and on plasma from 31 patients experiencing VF. The proportion of M184V/I variants was described and the association between the M184V/I mutation at 1% of threshold and VF was explored with logistic regression models.

Results: M184V and I mutations were detected in HIV-DNA for 173/252 (69%) and 31/252 (12%) of participants, respectively. Longer duration of first-line treatment, higher plasma viral load at first-line treatment failure and higher baseline HIV-DNA load were associated with the archived M184V. M184I mutation was always associated with a STOP codon, suggesting defective virus. The 48 week estimated probability of remaining free from VF was comparable with or without the M184V/I mutation for dual therapy. At failure, M184V and major PI mutations were detected in 1/17 and 5/15 patients in the bPI arm and in 2/2 and 0/3 in the bPI+lamivudine arm, respectively.

Conclusions: Using UDS evidenced that archiving of M184V in HIV-DNA is heterogeneous despite past historical M184V in 96% of cases. The antiviral efficacy of lamivudine-based dual therapy regimens is mainly due to the residual lamivudine activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-HIV Agents* / pharmacology
  • Anti-HIV Agents* / therapeutic use
  • Drug Resistance, Viral
  • HIV Infections* / drug therapy
  • HIV-1* / genetics
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Lamivudine / therapeutic use
  • Mutation
  • Protease Inhibitors / therapeutic use
  • Viral Load

Substances

  • Anti-HIV Agents
  • Protease Inhibitors
  • Lamivudine