Alismatis Rhizoma Triterpenes Alleviate High-Fat Diet-Induced Insulin Resistance in Skeletal Muscle of Mice

Evid Based Complement Alternat Med. 2021 Feb 2:2021:8857687. doi: 10.1155/2021/8857687. eCollection 2021.

Abstract

Alismatis rhizoma (AR), which is the dried rhizome of Alisma orientale (Sam.) Juz. (Alismataceae), is an important component of many famous Chinese formulas for hypoglycemic. This study aimed to evaluate the insulin resistance (IR) alleviating effects of AR triterpenes (ART) and ART component compatibility (ARTC, the mixture of 16-oxo-alisol A, 16-oxo-alisol A 23-acetate, 16-oxo-alisol A 24-acetate, alisol C, alisol C 23-acetate, alisol L, alisol A, alisol A 23-acetate, alisol A 24-acetate, alisol L 23-acetate, alisol B, alisol B 23-acetate, 11-deoxy-alisol B and 11-deoxy-alisol B 23-acetate) in high-fat diet-induced IR mice and plamitate-treated IR C2C12 cells, respectively. A dose of 200 mg/kg of ART was orally administered to IR mice, and different doses (25, 50, and 100 μg/ml) of ARTC groups were treated to IR C2C12 cells. IPGTT, IPITT, body weight, Hb1AC, FFA, TNF-α, MCP-1, and IR-associated gene expression (p-AMPK, p-IRS-1, PI3K, p-AKT, p-JNK, and GLUT4) were measured in IR mice. Glucose uptake, TNF-α, MCP-1, and IR-associated gene expression were also measured in IR C2C12 cells. Results showed that ART alleviated high-fat diet-induced IR in the skeletal muscle of mice, and this finding was further validated by ARTC. This study demonstrated that ART presented a notable IR alleviating effect by regulating IR-associated gene expression, and triterpenes were the material basis for the IR alleviating activity of AR.