Unraveling GLUT-mediated transcytosis pathway of glycosylated nanodisks

Asian J Pharm Sci. 2021 Jan;16(1):120-128. doi: 10.1016/j.ajps.2020.07.001. Epub 2020 Jul 27.

Abstract

Glucose transporter (GLUT)-mediated transcytosis has been validated as an efficient method to cross the blood-brain barrier and enhance brain transport of nanomedicines. However, the transcytosis process remains elusive. Glycopeptide-modified nanodisks (Gly-A7R-NDs), which demonstrated high capacity of brain targeting via GLUT-mediated transcytosis in our previous reports, were utilized to better understand the whole transcytosis process. Gly-A7R-NDs internalized brain capillary endothelial cells mainly via GLUT-mediated/clathrin dependent endocytosis and macropinocytosis. The intracellular Gly-A7R-NDs remained intact, and the main excretion route of Gly-A7R-NDs was lysosomal exocytosis. Glycosylation of nanomedicine was crucial in GLUT-mediated transcytosis, while morphology did not affect the efficiency. This study highlights the pivotal roles of lysosomal exocytosis in the process of GLUT-mediated transcytosis, providing a new impetus to development of brain targeting drug delivery by accelerating lysosomal exocytosis.

Keywords: Blood-brain barrier; Glucose transporter; Glycosylation; Lysosomal exocytosis; Transcytosis.