Pseudo-Anomalous Size-Dependent Electron-Phonon Interaction in Graded Energy Band: Solving the Fano Paradox

J Phys Chem Lett. 2021 Mar 4;12(8):2044-2051. doi: 10.1021/acs.jpclett.1c00217. Epub 2021 Feb 19.

Abstract

Quantum size effects on interferons (electron-phonon bound states), confined in fractal silicon (Si) nanostructures (NSs), have been studied by using Raman spectromicroscopy. A paradoxical size dependence of Fano parameters, estimated from Raman spectra, has been observed as a consequence of longitudinal variation of nanocrystallite size along the Si wires leading to local variations in the dopants' density which actually starts governing the Fano coupling, thus liberating the interferons to exhibit the typical quantum size effect. These interferons are more dominated by the effective reduction in dopants' density rather than the quantum confinement effect. Detailed experimental and theoretical Raman line shape analyses have been performed to solve the paradox by establishing that the increasing size effect actually is accompanied by receding Fano coupling due to the weakened electronic continuum. The latter has been validated by observing a consequent variation in the Raman signal from dopants which was found to be consistent with the above conclusion.