Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding

Breed Sci. 2020 Dec;70(5):594-604. doi: 10.1270/jsbbs.20047. Epub 2020 Nov 17.

Abstract

Genomic selection (GS) is being increasingly employed in plant breeding programs to accelerate genetic gain of economically important traits. However, its efficiency differs greatly across species, due to differences in reproduction and breeding strategies. Onion (Allium cepa L.) is an out-crossing crop but can be easily self-pollinated. High inbreeding depression occurs, and contamination of self-pollinated seeds is unavoidable in onion breeding. Taking this into consideration, 10-year breeding programs with and without GS were simulated. In addition to general GS, we proposed GS schemes to prevent inbreeding depression by avoiding co-selection of close relatives and combining the shortening of generation time and updating of the prediction model. The results showed that general GS with shortening of generation time yielded the highest genetic gain among the selection schemes in early years. However, inbreeding increased rapidly, reaching very high levels in later years. The proposed GS combining shortening of generation time with updating of the prediction model was superior to the others in later years, as it yielded relatively high genetic gain while maintaining significantly low levels of inbreeding. These results suggested that GS can be beneficial in onion breeding, and an optimal scheme should be selected depending on the selection period.

Keywords: genomic selection; inbreeding depression; onion breeding; out-crossing plant; simulation.