Spatial Analysis and Clinical Significance of HLA Class-I and Class-II Subunit Expression in Non-Small Cell Lung Cancer

Clin Cancer Res. 2021 May 15;27(10):2837-2847. doi: 10.1158/1078-0432.CCR-20-3655. Epub 2021 Feb 18.

Abstract

Purpose: To analyze the distribution, associated immune contexture, and clinical significance of human leukocyte antigen (HLA) class-I and HLA class-II subunits in non-small cell lung cancer (NSCLC).

Experimental design: Using spatially resolved and quantitative multiplexed immunofluorescence we studied the tumor/stromal tissue distribution, cancer cell-specific defects, and clinicopathologic/survival associations of β2 microglobulin (β2M), HLA-A, and HLA-B,-C heavy chains, as well as HLA class-II β chain in >700 immunotherapy-naïve NSCLCs from four independent cohorts. Genomic analysis of HLA genes in NSCLC was performed using two publicly available cohorts.

Results: Cancer cell-specific downregulation of HLA markers was identified in 30.4% of cases. β2M was downregulated in 9.8% (70/714), HLA-A in 9% (65/722), HLA-B,-C in 12.1% (87/719), and HLA class-II in 17.7% (127/717) of evaluable samples. Concurrent downregulation of β2M, HLA-B,-C, and HLA class-II was commonly identified. Deleterious mutations in HLA genes were detected in <5% of lung malignancies. Tumors with cancer cell-specific β2M downregulation displayed reduced T cells and increased natural killer (NK)-cell infiltration. Samples with cancer cell HLA-A downregulation displayed modest increase in CD8+ T cells and NK-cell infiltration. Samples with cancer cell-selective HLA-B,-C or HLA class-II downregulation displayed reduced T cells and NK-cell infiltration. There was limited association of the markers with clinicopathologic variables and KRAS/EGFR mutations. Cancer cell-selective downregulation of the HLA subunits was associated with shorter overall survival.

Conclusions: Our results reveal frequent and differential defects in HLA class-I and HLA class-II protein subunit expression in immunotherapy-naïve NSCLCs associated with distinct tumor microenvironment composition and patient survival.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alleles*
  • Carcinoma, Non-Small-Cell Lung / diagnosis
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / mortality
  • Computational Biology / methods
  • DNA Mutational Analysis
  • Fluorescent Antibody Technique / methods
  • Fluorescent Antibody Technique / standards
  • Gene Expression Regulation, Neoplastic*
  • Histocompatibility Antigens Class I / genetics*
  • Histocompatibility Antigens Class I / immunology
  • Histocompatibility Antigens Class I / metabolism
  • Histocompatibility Antigens Class II / genetics*
  • Histocompatibility Antigens Class II / immunology
  • Histocompatibility Antigens Class II / metabolism
  • Humans
  • Lung Neoplasms / diagnosis
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / mortality
  • Mutation
  • Prognosis

Substances

  • Histocompatibility Antigens Class I
  • Histocompatibility Antigens Class II