Delta-9-tetrahydrocannabinol inhibits invasion of HTR8/SVneo human extravillous trophoblast cells and negatively impacts mitochondrial function

Sci Rep. 2021 Feb 17;11(1):4029. doi: 10.1038/s41598-021-83563-9.

Abstract

Prenatal cannabis use is a significant problem and poses important health risks for the developing fetus. The molecular mechanisms underlying these changes are not fully elucidated but are thought to be attributed to delta-9-tetrahydrocannabinol (THC), the main bioactive constituent of cannabis. It has been reported that THC may target the mitochondria in several tissue types, including placental tissue and trophoblast cell lines, and alter their function. In the present study, in response to 48-h THC treatment of the human extravillous trophoblast cell line HTR8/SVneo, we demonstrate that cell proliferation and invasion are significantly reduced. We further demonstrate THC-treatment elevated levels of cellular reactive oxygen species and markers of lipid damage. This was accompanied by evidence of increased mitochondrial fission. We also observed increased expression of cellular stress markers, HSP70 and HSP60, following exposure to THC. These effects were coincident with reduced mitochondrial respiratory function and a decrease in mitochondrial membrane potential. Taken together, our results suggest that THC can induce mitochondrial dysfunction and reduce trophoblast invasion; outcomes that have been previously linked to poor placentation. We also demonstrate that these changes in HTR8/SVneo biology may be variably mediated by cannabinoid receptors CB1 and CB2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Chaperonin 60 / drug effects
  • Chaperonin 60 / genetics
  • Dronabinol / adverse effects*
  • Dronabinol / pharmacology
  • Female
  • HSP70 Heat-Shock Proteins / drug effects
  • HSP70 Heat-Shock Proteins / genetics
  • Humans
  • Mitochondria / drug effects*
  • Mitochondria / physiology
  • Mitochondrial Dynamics
  • Placenta / metabolism
  • Placentation / drug effects
  • Pregnancy
  • Reactive Oxygen Species
  • Trophoblasts / drug effects*

Substances

  • Chaperonin 60
  • HSP70 Heat-Shock Proteins
  • Reactive Oxygen Species
  • Dronabinol