Experimental increase in fecundity causes upregulation of fecundity and body maintenance genes in the fat body of ant queens

Biol Lett. 2021 Feb;17(2):20200909. doi: 10.1098/rsbl.2020.0909. Epub 2021 Feb 17.

Abstract

In most organisms, fecundity and longevity are negatively associated and the molecular regulation of these two life-history traits is highly interconnected. In addition, nutrient intake often has opposing effects on lifespan and reproduction. In contrast to solitary insects, the main reproductive individual of social hymenopterans, the queen, is also the most long-lived. During development, queen larvae are well-nourished, but we are only beginning to understand the impact of nutrition on the queens' adult life and the molecular regulation and connectivity of fecundity and longevity. Here, we used two experimental manipulations to alter queen fecundity in the ant Temnothorax rugatulus and investigated associated changes in fat body gene expression. Egg removal triggered a fecundity increase, leading to expression changes in genes with functions in fecundity such as oogenesis and body maintenance. Dietary restriction lowered the egg production of queens and altered the expression of genes linked to autophagy, Toll signalling, cellular homeostasis and immunity. Our study reveals that an experimental increase in fecundity causes the co-activation of reproduction and body maintenance mechanisms, shedding light on the molecular regulation of the link between longevity and fecundity in social insects.

Keywords: dietary restriction; fertility; lifespan; longevity; social insects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ants* / genetics
  • Fat Body
  • Fertility / genetics
  • Longevity
  • Reproduction / genetics
  • Up-Regulation