Proteomic study of advanced cirrhosis based on HCV to reveal potential biomarkers

Gastroenterol Hepatol Bed Bench. 2020 Winter;13(Suppl1):S113-S121.

Abstract

Aim: We aimed to carry out proteomic assessment of long-term effects of hepatitis C on liver.

Background: Cirrhosis is a condition where liver is damaged and loses its efficiency, and has the high rate of mortality in the world. Proteome profiling may help to identify important proteins and find the pathogenesis Cirrhosis is a condition where liver is damaged and loses its efficiency, and has the high rate of mortality in the world. Proteome profiling may help to identify important proteins and find the pathogenesis.

Methods: Here, by the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), combined with (MALDI-TOF-TOF MS), proteome profile of decompensated HCV cirrhosis is determined compared to healthy matched controls. Furthermore, Cytoscape has used network analysis. The proteome comparison between two groups identified proteins with significant expression changes (p<0.05 and fold change ≥ 1.5).

Results: We found upregulation of IGHA1, C3, A1BG, IGKC and one isoform of HP. Also, lower expression of APOA4 and the other spot of HP in advanced cirrhosis patients were revealed based on HCV compared to matched controls. According to network analysis, ALB has been introduced as a key protein, which may play an important role in pathogenesis.

Conclusion: Integration of the proteomics with protein interaction data led to the identification of several novel key proteins related to the immune system that may reflect the long-term effects of hepatitis C virus on the liver, and can introduce as therapeutic targets for advanced HCV- cirrhosis.

Keywords: Protein –protein interaction; Proteomic; Two-dimensional gel electrophoresis (2DE); hepatitis C; liver cirrhosis.