VASA-induced cytoplasmic localization of CYTB-positive mitochondrial substance occurs by destructive and nondestructive mitochondrial effusion, respectively, in early and late spermatogenic cells of the Manila clam

Protoplasma. 2021 Jul;258(4):817-825. doi: 10.1007/s00709-020-01601-1. Epub 2021 Feb 13.

Abstract

To analyze the release of mitochondrial material, a process that is believed to be (i) induced by the VASA protein derived from germplasm granules, and (ii) which appears to play an important role during meiotic differentiation, the localization of the CYTB protein was studied in the process of spermatogenesis of the bivalve mollusk Ruditapes philippinarum (Manila clam). It was found that in early spermatogenic cells, such as spermatogonia and spermatocytes, the CYTB protein shows dispersion in the cytoplasm following the total disaggregation of VASA-invaded mitochondria, what is called here as "destructive mitochondrial effusion (DME)." It was found that the mitochondria of the maturing sperm cells also uptake VASA. It is accompanied by extramitochondrial transmembrane localization of CYTB assuming mitochondrial content release without mitochondrion demolishing. This phenomenon is called here as "nondestructive mitochondrial effusion (NDME)." Thus, in the spermatogenesis of the Manila clam, two patterns of mitochondrial release, DME and NDME, were found, which function, respectively, in early spermatogenic cells and in maturing spermatozoa. Despite the morphological difference, it is assumed that both DME and NDME have a similar functional nature. In both cases, the intramitochondrial localization of VASA coincides with the extramitochondrial localization of the mitochondrial matrix.

Keywords: CYTB; Manila clam; Mitochondria; Spermatogenic cells; VASA.

MeSH terms

  • Animals
  • Bivalvia*
  • Cytoplasm / metabolism
  • Male
  • Mitochondria
  • Spermatocytes* / metabolism
  • Spermatogenesis