Metabolic Engineering of Saccharomyces cerevisiae for Ethyl Acetate Biosynthesis

ACS Synth Biol. 2021 Mar 19;10(3):495-504. doi: 10.1021/acssynbio.0c00446. Epub 2021 Feb 12.

Abstract

Ethyl acetate can be synthesized from acetyl-CoA and ethanol via a reaction by alcohol acetyltransferases (AATase) in yeast. In order to increase the yield of acetyl-CoA, different terminators were used to optimize the expressions of acetyl-CoA synthetase (ACS1/2) and aldehyde dehydrogenase (ALD6) to increase the contents of acetyl-CoA in Saccharomyces cerevisiae. ATF1 coding AATase was coexpressed in expression cassettes of ACS1/ACS2 and ALD6 to promote the carbon flux toward ethyl acetate from acetyl-CoA. Further to improve ethyl acetate production, four heterologous AATase including HuvEAT1 (Hanseniaspora uvarum), KamEAT1 (Kluyveromyces marxianus), VAAT (wild strawberry), and AeAT9 (kiwifruit) were introduced. Subsequently mitochondrial transport and utilization of pyruvate and acetyl-CoA were impeded to increase the ethyl acetate accumulation in cytoplasm. Under the optimal fermentation conditions, the engineered strain of PGAeΔPOR2 produced 1.69 g/L ethyl acetate, which was the highest value reported to date by metabolic engineering methods.

Keywords: Saccharomyces cerevisiae; acetyl-CoA biosynthesis; alcohol acetyltransferases; ethyl acetate; mitochondrial pyruvate transport; terminator systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetates / chemistry
  • Acetates / metabolism*
  • Acetyl Coenzyme A / biosynthesis
  • Acyltransferases / genetics
  • Acyltransferases / metabolism
  • Coenzyme A Ligases / genetics
  • Coenzyme A Ligases / metabolism
  • Hanseniaspora / enzymology
  • Kluyveromyces / enzymology
  • Metabolic Engineering*
  • Pyruvic Acid / metabolism
  • Saccharomyces cerevisiae / metabolism*

Substances

  • Acetates
  • Acetyl Coenzyme A
  • ethyl acetate
  • Pyruvic Acid
  • Acyltransferases
  • ethanol acyltransferase
  • Coenzyme A Ligases
  • acetate-CoA ligase (ADP-forming)

Supplementary concepts

  • Hanseniaspora uvarum
  • Kluyveromyces marxianus