Dually nanocoated planar waveguides towards multi-parameter sensing

Sci Rep. 2021 Feb 11;11(1):3669. doi: 10.1038/s41598-021-83324-8.

Abstract

The incidence of light on the edge of a glass coverslip for a microscope slide, deposited with a thin film on both faces, permits exciting two resonances in each polarisation state of the input light, TE and TM. This dually nanocoated waveguide can be used for detecting simultaneously two different parameters on the basis of a further deposition of suitable materials on each face. As an example, the possibility of detecting temperature and humidity by using polydimethylsiloxane and agarose coatings, respectively, was demonstrated, which opens the path for the development of other dual-parameter sensors, and for even more parameters in cases in which each face of the coverslip is patterned. Moreover, the device was optimised in order to position two resonances in the near infrared (NIR) and two resonances in the visible region, with sensitivities of 0.34 nm/°C and 0.23 nm/%RH in the visible region and 1.16 nm/°C and 0.34 nm/%RH in the NIR, respectively, demonstrating the possibility of using the device in both spectral ranges and opening the path for the development of sensors based on multiple resonances, each one related to a different parameter to be detected.