Discrimination Improvement Through Undesirable Feedback in Coupling Object Manipulation Tasks

Int J Neural Syst. 2021 May;31(5):2150012. doi: 10.1142/S012906572150012X. Epub 2021 Feb 10.

Abstract

Subjective effort can significantly affect the ability of humans to act optimally in dynamic manipulation tasks. In a previous study, we designed a complex object coupling manipulation task that required tight performance and induced high cognitive workload. We hypothesize that strong-effort-related physiological reactivity during the dynamic manipulation task improves the user performance in an undesired task feedback situation. To test this hypothesis, using the motor intentions' discrimination from electroencephalogram (EEG) measurements, we evaluate the effort expended by 20 participants in a controlling task with constraints involving complex coupling objects. Specifically, the finer motor decisions are obtained from the controlling information in EEG by using two fingers from the same hand rather than two hands. The motor intention is decoded from a task-dependent EEG through a regularized discriminant analysis, and the area under the curve is [Formula: see text]. Furthermore, we compare the undesired and desired task feedback conditions along with the individual's effort dynamic adjustment, and investigate whether the undesired task feedback improved the discrimination of the motor activities. A stronger effort to attain the desired feedback state corresponds to improved motor activity discrimination from the EEG in the undesired task feedback scenario. The differences in the brain activities under the undesired and desired task feedback conditions are analyzed using brain-network-based topographical scalp maps. Our experiment provides preliminary evidence that inducing strong effort can improve discrimination performance during highly demanding tasks. This finding can advance our understanding of human attention, potentially improve the accuracy of intention recognition, and may inspire better EEG acquisition contexts.

Keywords: Dynamic complex model; EEG; regularized discriminant analysis; subjective effort; topographical scalp map.

MeSH terms

  • Brain Mapping
  • Electroencephalography*
  • Feedback
  • Fingers
  • Hand*
  • Humans