Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Catalysis

Langmuir. 2021 Feb 23;37(7):2445-2456. doi: 10.1021/acs.langmuir.0c03505. Epub 2021 Feb 12.

Abstract

Here, we have reported micellar aggregations of an amphiphilic block copolymer in mixed solvent and their subsequent use as a template for the fabrication of a very dense, tunable metal nanoparticle-decorated surface for SERS and flexible dip catalysis applications. A silver nanoparticle-immobilized layer on silicon substrates shows excellent SERS (surface-enhanced Raman scattering)-based sensing performance for model analyte rhodamine B up to 10-6 M concentration with a well-defined calibration curve. Furthermore, a facile approach to the preparation of metal NP-immobilized BCP membranes as efficient dip catalyst for two model reactions (the reduction of nitrophenol and the Suzuki-Miyaura reaction of iodobenzene or 2,7-diiodofluorene with phenyl boronic acid) is also demonstrated. The Ag NP-decorated film exhibits high efficiency and extensive reusability in a prototype reaction such as the reduction of nitrophenol by sodium borohydride with a very high turnover number, >126 (for a single use), whereas the Pd NP-immobilized film also has a high, ∼100%, reaction yield and extensive reusability and applicable for different aromatic systems. This work provides a new platform for the design and synthesis of a functionalizable, flexible, and highly mechanically stable dip catalyst which is highly demanded in the catalytic production of value-added chemicals and environmental applications such as wastewater treatment.