Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases

Eur Biophys J. 2021 Jul;50(5):671-685. doi: 10.1007/s00249-021-01505-9. Epub 2021 Feb 9.

Abstract

Intrinsically disordered proteins (IDPs) have captured attention in the last couple of decades due to their functional roles despite a lack of specific structure. Moreover, these proteins are found to be highly aggregation prone depending on the mutational and environmental changes to which they are subjected. The aggregation of such proteins either in the intracellular context or extracellular matrix is associated with several adverse pathophysiological conditions such as Alzheimer's, Parkinson's, and Huntington's diseases, Spinocerebellar ataxia, and Type-II diabetes. Interestingly, it has been noted that the smaller oligomers formed by IDPs are more toxic to cells than their larger aggregates. This necessitates the development of techniques that can detect the smaller oligomers formed by IDPs for diagnosis of such diseases during their early onset. Fluorescence-based spectroscopic and microscopic techniques are highly effective as compared to other techniques for the evaluation of protein oligomerization, organization, and dynamics. In this review, we discuss several fluorescence-based techniques including fluorescence/Förster resonance energy transfer (FRET), homo-FRET, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging (FLIM), and photobleaching image correlation spectroscopy (pbICS) that are routinely used to identify protein oligomers in extracellular and intracellular matrices.

Keywords: Amyloidogenic diseases; FCS; FLIM; FRAP; FRET; Homo-FRET; Oligomerization; pbICS.

Publication types

  • Review

MeSH terms

  • Fluorescence Resonance Energy Transfer*
  • Intrinsically Disordered Proteins
  • Photobleaching
  • Spectrometry, Fluorescence

Substances

  • Intrinsically Disordered Proteins